Eliel, E. L., Koskimies, J., McPhail, A. T. \& Swern, D. (1976). J. Org. Chem. 41, 2137-2140.

Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& DeclercQ, J. P. (1976). MULTAN. A System of Computer Programs for the Automatic Solution of Crystal S.tructures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Varkey, T. E., Whitfield, G. F. \& Swern, D. (1974). J. Org. Chem. 39, 3365-3372.

SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1978). A34, 143157.

Acta Cryst. (1981). B37, 1613-1615

Structure of a Novel Type of Heteropolyanion: Dicupro(II)-18-molybdodisilicate(12-), $\left[\mathrm{Cu}_{2} \mathrm{Si}_{2} \mathrm{Mo}_{18} \mathrm{O}_{66}\right]^{12-}$

By H. F. Fukushima,* A. Kobayashi and Y. Sasaki
Department of Chemistry and Research Centre for Spectrochemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan

(Received 19 January 1981; accepted 9 March 1981)

Abstract

NH}_{4}\right)_{12}\left[\mathrm{Cu}_{2} \mathrm{Si}_{2} \mathrm{Mo}_{18} \mathrm{O}_{66}\right] .14 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=\) 3434.2, triclinic, $P \overline{1}, a=12 \cdot 19$ (2), $b=15 \cdot 78$ (2), $c=$ 10.81 (2) $\AA, \alpha=91.3$ (6), $\beta=74.6$ (3), $\gamma=75.8$ (2) ${ }^{\circ}$, $U=1989 \AA^{3}, Z=1, D_{x}=2.87, D_{m}=2.91 \mathrm{Mg} \mathrm{m}^{-3}$, $\mu($ Mo $K \alpha)=2.47 \mathrm{~mm}^{-1}$. Block-diagonal least-squares calculations based on 4602 independent intensities reduced the R factor to $0 \cdot 048$. The X-ray structure determination of $\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{CuSiMo} \mathrm{O}_{33}\right] .7 \mathrm{H}_{2} \mathrm{O}$ has shown that the compound has a dimeric structure and contains the polyanion $\left[\mathrm{Cu}_{2} \mathrm{Si}_{2} \mathrm{Mo}_{18} \mathrm{O}_{66}\right]^{12-}$. Each SiO_{4} tetrahedron is surrounded by nine MoO_{6} octahedra. The two CuO_{6} octahedra, which have a common edge, are attached to both Si atoms. These CuO_{6} octahedra are elongated by the static Jahn-Teller effect.

Introduction. Many kinds of heteropolymolybdates and -tungstates containing two different hetero-atoms have recently been prepared and investigated. Anions of the general formula $\left[\mathrm{H}_{2} X^{m+} Y^{n+} M_{11} \mathrm{O}_{40}\right]^{(12-m-n)-}$ (where M $=\mathrm{Mo}^{6+}$ or $\mathrm{W}^{6+} ; X^{m+}=\mathrm{Si}^{4+}, \mathrm{Ge}^{4+}, \mathrm{P}^{5+}, \mathrm{As}^{5+}, \mathrm{Co}^{2+}$, or $\mathrm{Co}^{3+} ; Y^{n+}=$ transition metals) have the Keggin structure in which one of the Mo or W atoms in the $M \mathrm{O}_{6}$ octahedra is substituted by Y^{n+} (Baker, Baker,

[^0]Eriks, Pope, Shibata, Rollins, Fang \& Koh, 1966; Weakley \& Malik, 1967; Tourné \& Tourné, 1969; Tourné, Tourné, Malik \& Weakley, 1970; Zonnevijlle, 1976). The $\left[\mathrm{H}_{2} X_{2}^{m+} Y^{n+} M_{17} \mathrm{O}_{62}\right]^{(20-2 m-n)-}$-type anions $\left(X^{m+}=\mathrm{P}^{s+}\right.$ or $\mathrm{As}^{s+} ; M=\mathrm{Mo}^{6+}$ or $\mathrm{W}^{6+} ; Y^{n+}=$ transition metals) (Malik \& Weakley, 1968) can be regarded as substitution derivatives of the well known $\left[X_{2}^{m+} M_{18} \mathrm{O}_{62}\right]^{(16-2 m)-}$ anion, in which the geometrical arrangement of the $M \mathrm{O}_{6}$ octahedra around each X_{0} tetrahedron is common to that found in the Dawson structure.

The $\left[\mathrm{P}_{2} \mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~W}_{18} \mathrm{O}_{68}\right]^{10-}$ anion (Weakley, Evans, Showell, Tourné \& Tourné, 1973) likewise contains two fragments of the Keggin ion, $\mathrm{PW}_{9} \mathrm{O}_{34}$, but lacks one of the four $\mathrm{W}_{3} \mathrm{O}_{13}$ units contained in the Keggin structure. The present paper reports a new type of heteropolyanion containing two different kinds of hetero-atoms (Si and $\mathrm{Cu}^{\mathrm{II}}$) with a structure having no resemblance to the Keggin or Dawson structure. The ammonium salt of the present complex was first prepared by Leyrie, Fournier \& Massart (1971) together with $\left[\mathrm{H}_{2} \mathrm{CuSiMo}{ }_{11} \mathrm{O}_{40}\right]^{6-}$ salts, and Fournier \& Massart (1974) later gave the ammonium salt the monomeric formula $\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{CuSiMo} 9_{9} \mathrm{O}_{34} \mathrm{H}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$. The crystals were prepared by a procedure similar to that described by Leyrie, Fournier \& Massart (1971).

Table 1. Fractional coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{2}\right)$ with e.s.d.'s in parentheses
$B_{\text {eq }}=\frac{4}{3}\left(B_{11} a^{2}+B_{22} b^{2}+B_{33} c^{2}+2 B_{12} a b \cos \gamma+2 B_{23} b c \cos \alpha+\right.$
$\left.2 B_{13} c a \cos \beta\right)$.

	x	y	z	$B_{\text {eq }}$
Mo(1)	4352 (1)	7338 (1)	9372 (1)	169 (4)
$\mathrm{Mo}(2)$	3580 (1)	8966 (1)	7099 (1)	144 (3)
Mo(3)	3425 (1)	6916 (1)	6445 (1)	140 (3)
Mo(4)	1224 (1)	8910 (1)	6207 (1)	135 (3)
$\mathrm{Mo}(5)$	932 (1)	6876 (1)	5878 (1)	158 (3)
Mo (6)	-1163 (1)	8102 (1)	8400 (1)	135 (3)
$\mathrm{Mo}(7)$	1013 (1)	6105 (1)	8675 (1)	135 (3)
$\mathrm{Mo}(8)$	-838(1)	7451 (1)	11190 (1)	139 (3)
Mo(9)	2255 (1)	6660 (1)	11326 (1)	163 (4)
Cu	929 (2)	10315 (1)	9155 (2)	132 (5)
Si	1408 (4)	8218 (3)	9232 (4)	118 (10)
$\mathrm{O}(1)$	3889 (9)	6383 (7)	10272 (10)	186 (31)
$\mathrm{O}(2)$	5797 (10)	6793 (8)	8724 (12)	267 (36)
$\mathrm{O}(3)$	4334 (11)	7996 (9)	10671 (12)	269 (38)
$\mathrm{O}(4)$	4223 (9)	8280 (7)	8242 (11)	181 (31)
$\mathrm{O}(5)$	4010 (9)	6652 (7)	7758 (11)	194 (32)
O(6)	2340 (8)	7720 (7)	9965 (10)	150 (28)
$\mathrm{O}(7)$	4715 (10)	9396 (8)	6332 (11)	244 (35)
$\mathrm{O}(8)$	2599 (9)	9822 (7)	8200 (10)	160 (29)
$\mathrm{O}(9)$	4192 (9)	7768 (7)	5932 (10)	163 (29)
O(10)	2702 (10)	9170 (8)	5807 (11)	205 (32)
$\mathrm{O}(11)$	2126 (9)	8245 (7)	7726 (10)	139 (28)
$\mathrm{O}(12)$	4207 (10)	6053 (7)	5303 (10)	195 (31)
O(13)	2011 (9)	6531 (7)	7241 (9)	143 (28)
$\mathrm{O}(14)$	2146 (9)	7497 (7)	5420 (10)	156 (29)
O(15)	887 (11)	9124 (8)	4795 (11)	231 (35)
$\mathrm{O}(16)$	436 (9)	9842 (7)	7251 (10)	177 (30)
$\mathrm{O}(17)$	150 (9)	8215 (7)	6947 (10)	154 (29)
O(18)	1529 (11)	5834 (8)	5204 (12)	254 (36)
$\mathrm{O}(19)$	-32 (10)	7268 (8)	4968 (10)	211 (33)
$\mathrm{O}(20)$	-156 (9)	6722 (7)	7527 (10)	157 (30)
$\mathrm{O}(21)$	-1473 (10)	9178 (7)	8999 (11)	182 (31)
$\mathrm{O}(22)$	-2200 (10)	8084 (8)	7613 (12)	249 (36)
$\mathrm{O}(23)$	411 (8)	7658 (6)	9303 (10)	128 (28)
$\mathrm{O}(24)$	-1813 (9)	7650 (7)	9937 (10)	177 (30)
$\mathrm{O}(25)$	1198 (10)	5066 (7)	8060 (11)	192 (32)
O (26)	-290 (9)	6265 (7)	10041 (10)	171 (31)
$\mathrm{O}(27)$	2051 (9)	6004 (7)	9548 (10)	169 (30)
O(28)	-1808 (10)	7130 (7)	12408 (12)	226 (34)
O(29)	-1080 (9)	8584 (7)	11579 (10)	164 (29)
$\mathrm{O}(30)$	2362 (11)	7327 (8)	12521 (11)	234 (35)
O(31)	2340 (11)	5669 (8)	11945 (13)	275 (39)
O(32)	753 (9)	9208 (6)	9850 (10)	140 (28)
$\mathrm{O}(33)$	566 (10)	7056 (8)	11651 (11)	218 (33)
$\mathrm{H}_{2} \mathrm{O}(1)$	6251 (16)	5283 (12)	6416 (19)	592 (66)
$\mathrm{H}_{2} \mathrm{O}(2)$	-2415 (15)	5894 (11)	9824 (20)	567 (67)
$\mathrm{H}_{2} \mathrm{O}(3)$	-1489 (15)	5855 (12)	6535 (18)	554 (66)
$\mathrm{H}_{2} \mathrm{O}(4)$	6130 (21)	7338 (18)	4021 (25)	943 (112)
$\mathrm{H}_{2} \mathrm{O}(5)$	-3579 (15)	8689 (11)	3954 (16)	525 (59)
$\mathrm{H}_{2} \mathrm{O}(6)$	-1426 (15)	8830 (12)	4517 (16)	500 (59)
$\mathrm{H}_{2} \mathrm{O}(7)$	1994 (13)	9184 (9)	2031 (13)	342 (44)
$\mathrm{N}(1)$	-3377 (26)	5878 (21)	3736 (35)	1090 (141)
N (2)	-3254 (20)	7312 (17)	5834 (22)	617 (89)
N(3)	-3974 (15)	8829 (12)	1419 (19)	403 (60)
N(4)	-272 (20)	5747 (13)	3672 (19)	477 (74)
N (5)	3239 (17)	10014 (15)	3418 (19)	478 (69)
N (6)	4334 (20)	7828 (19)	3243 (18)	636 (94)

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{Cu}_{2} \mathrm{Si}_{2} \mathrm{Mo}_{18} \mathrm{O}_{66}\right]^{12-}$ (estimated standard deviations in parentheses)

$\mathrm{Mo}(1)-\mathrm{Mo}(2)$	$3.722(19)$	$\mathrm{Mo}(5)-\mathrm{Mo}(6)$	$3.367(20)$
$\mathrm{Mo}(1)-\mathrm{Mo}(3)$	$3.729(10)$	$\mathrm{Mo}(5)-\mathrm{Mo}(7)$	$3.301(13)$
$\mathrm{Mo}(2)-\mathrm{Mo}(3)$	$3.357(9)$	$\mathrm{Mo}(6)-\mathrm{Mo}(7)$	$3.663(9)$
$\mathrm{Mo}(2)-\mathrm{Mo}(4)$	$3.283(7)$	$\mathrm{Mo}(6)-\mathrm{Mo}(8)$	$3.299(11)$
$\mathrm{Mo}(3)-\mathrm{Mo}(4)$	$3.664(9)$	$\mathrm{Mo}(7)-\mathrm{Mo}(8)$	$3.335(21)$
$\mathrm{Mo}(3)-\mathrm{Mo}(5)$	$3.271(6)$	$\mathrm{Mo}(7)-\mathrm{Mo}(9)$	$3.757(11)$
$\mathrm{Mo}(3)-\mathrm{Mo}(7)$	$3.784(14)$	$\mathrm{Mo}(8)-\mathrm{Mo}(9)$	$3.713(7)$
$\mathrm{Mo}(4)-\mathrm{Mo}(5)$	$3.336(6)$	$\mathrm{Mo}(9)-\mathrm{Mo}(1)$	$3.274(12)$
$\mathrm{Mo}(4)-\mathrm{Mo}(6)$	$3.742(14)$		
$\mathrm{Si}-\mathrm{O}(6)$	$1.614(13)$	$\mathrm{Cu}-\mathrm{O}(8)$	$1.971(12)$
$\mathrm{Si}-\mathrm{O}(11)$	$1.638(12)$	$\mathrm{Cu}-\mathrm{O}(16)$	$2.442(15)$
$\mathrm{Si}-\mathrm{O}(23)$	$1.657(12)$	$\mathrm{Cu}-\mathrm{O}(32)$	$1.954(13)$
$\mathrm{Si}-\mathrm{O}(32)$	$1.607(12)$	$\mathrm{Cu}-\mathrm{O}(21)^{1}$	$2.440(16)$
		$\mathrm{Cu}-\mathrm{O}(29)^{1}$	$1.955(14)$
		$\mathrm{Cu}-\mathrm{O}(32)^{1}$	$1.991(12)$
$\mathrm{O}(6)-\mathrm{Si}-\mathrm{O}(11)$	$108.1(6)$	$\mathrm{O}(8)-\mathrm{Cu}-\mathrm{O}(16)$	$87.4(4)$
$\mathrm{O}(6)-\mathrm{Si}-\mathrm{O}(23)$	$108.6(6)$	$\mathrm{O}(8)-\mathrm{Cu}-\mathrm{O}(32)$	$93.7(4)$
$\mathrm{O}(6)-\mathrm{Si}-\mathrm{O}(32)$	$112.7(6)$	$\mathrm{O}(8)-\mathrm{Cu}-\mathrm{O}(21)^{1}$	$91.3(4)$
$\mathrm{O}(11)-\mathrm{Si}-\mathrm{O}(23)$	$109.8(6)$	$\mathrm{O}(8)-\mathrm{Cu}-\mathrm{O}(29)^{1}$	$86.7(4)$
$\mathrm{O}(11)-\mathrm{Si}-\mathrm{O}(32)$	$108.5(5)$	$\mathrm{O}(16)-\mathrm{Cu}-\mathrm{O}(32)$	$88.7(4)$
$\mathrm{O}(23)-\mathrm{Si}-\mathrm{O}(32)$	$109.1(5)$	$\mathrm{O}(16)-\mathrm{Cu}-\mathrm{O}(29)^{1}$	$89.6(4)$
		$\mathrm{O}(16)-\mathrm{Cu}-\mathrm{O}(32)^{1}$	$93.3(4)$
		$\mathrm{O}(32)-\mathrm{Cu}-\mathrm{O}(21)^{1}$	$93.4(4)$
		$\mathrm{O}(32)-\mathrm{Cu}-\mathrm{O}(32)^{1}$	$85.1(4)$
		$\mathrm{O}(21)^{1}-\mathrm{Cu}-\mathrm{O}(29)^{1}$	$88.3(5)$
		$\mathrm{O}(21)^{1}-\mathrm{Cu}-\mathrm{O}(32)^{1}$	$88.1(4)$
	$\mathrm{O}(29)^{1}-\mathrm{Cu}-\mathrm{O}(32)^{1}$	$94.5(4)$	

Intensity data were collected on a Rigaku automated four-circle diffractometer with graphite-monochromated Mo $K \alpha$ radiation for independent reflections with $2 \theta<55^{\circ}$. The structure was solved by the direct method, and refined using 4602 reflections $\left[\left|F_{o}\right|>\right.$ $3 \sigma(|F|)]$. The intensities were corrected for Lorentz and polarization effects but not for absorption. All the non-hydrogen atoms were located and treated anisotropically. The final R value was 0.048 . The atomic scattering factors were taken from International Tables for X-ray Crystallography (1962). Atomic coordinates are listed in Table 1, selected bond lengths and angles in Table 2.*

Discussion. The molecular structure is shown in Figs. 1 and 2. The anion $\left[\mathrm{Cu}_{2} \mathrm{Si}_{2} \mathrm{Mo}_{18} \mathrm{O}_{66}\right]^{12-}$ has a center of symmetry and a pseudo mirror plane passing through $\mathrm{Mo}(5), \mathrm{Si}, \mathrm{Mo}(5)^{\mathrm{I}}, \mathrm{Si}^{\mathrm{I}}$, which means that all the atoms in the $\mathrm{CuSiMo}_{9} \mathrm{O}_{33}$ fragment are crystallographically independent.

In Fig. 1, $\mathrm{Mo}(2), \mathrm{Mo}(3), \mathrm{Mo}(4)$ and $\mathrm{Mo}(6), \mathrm{Mo}(7)$, $\mathrm{Mo}(8)$ form two $\mathrm{Mo}_{3} \mathrm{O}_{13}$ groups having the pseudotrigonal symmetry which is commonly found in many other heteropolyanions. These two units are linked

[^1]

Fig. 1. Drawing of the anion $\left[\mathrm{Cu}_{2} \mathrm{Si}_{2} \mathrm{Mo}_{18} \mathrm{O}_{66}\right]^{12-}$ with the atom numbering. Superscript I indicates the inversely related atom.

Fig. 2. Polyhedral model of the $\left[\mathrm{Cu}_{2} \mathrm{Si}_{2} \mathrm{Mo}_{18} \mathrm{O}_{66}\right]^{12-}$ anion.
through the two shared O atoms $O(13)$ and $O(17)$. The central O atoms, $\mathrm{O}(11)$ and $\mathrm{O}(23)$, of each of these trigonal groups occupy two corners of the SiO_{4} tetrahedron.

One of the remaining O atoms of the SiO_{4} tetrahedron, $\mathrm{O}(6)$, is shared by $\mathrm{Mo}(1)$ and $\mathrm{Mo}(9)$. These two metal atoms form two MoO_{6} octahedra sharing an edge, $\mathrm{O}(1)-\mathrm{O}(6)$, and $\mathrm{Mo}(1)$ is linked to
$\mathrm{Mo}(2)$ and $\mathrm{Mo}(3)$ through $\mathrm{O}(4)$ and $\mathrm{O}(5)$ respectively, while $\mathrm{Mo}(9)$ is bridged to $\mathrm{Mo}(7)$ and $\mathrm{Mo}(8)$ by $\mathrm{O}(27)$ and $\mathrm{O}(33)$.

The fourth O atom, $\mathrm{O}(32)$, attached to the Si is shared by two Cu atoms, and the two CuO_{6} octahedra have a common edge, $\mathrm{O}(32)-\mathrm{O}(32)^{\mathrm{I}}$. The two Cu atoms are crystallographically equivalent. It will be seen that Cu shares $\mathrm{O}(8), \mathrm{O}(16), \mathrm{O}(21)^{\mathrm{I}}$, and $\mathrm{O}(29)^{\mathrm{I}}$ with $\operatorname{Mo}(2), \mathrm{Mo}(4), \mathrm{Mo}(6)^{1}$, and $\operatorname{Mo}(8)^{1}$ respectively.

Among the six independent $\mathrm{Cu}-\mathrm{O}$ bond lengths, the two longest $[2.44$ (2) \AA] are those between the Cu and the two trans O atoms not attached to the Si atoms. All the other four $\mathrm{Cu}-\mathrm{O}$ distances (to the remaining Mo atoms and to the Si atoms) are 1.97 (1) \AA. Such an elongation of the CuO_{6} octahedron may be attributed to the static Jahn-Teller effect.

A notable feature of this anion is the presence of the MoO_{6} octahedron containing the $\mathrm{Mo}(5)$ atom. This $\mathrm{Mo}(5)$ is linked to the two $\mathrm{Mo}_{3} \mathrm{O}_{13}$ units sharing the bridging $\mathrm{O}(13)$ and $\mathrm{O}(17)$, and to each $\mathrm{Mo}_{3} \mathrm{O}_{13}$ unit by $O(14)$ and $O(20)$ respectively. Thus the octahedron around $\mathrm{Mo}(5)$ covers what would otherwise be a hole (as compared with the Keggin structure) between the two $\mathrm{Mo}_{3} \mathrm{O}_{13}$ units.

On the other side of the Si atom diagonally opposite $\mathrm{Mo}(5)$ there are, however, no MoO_{6} octahedra. The elongation of the CuO_{6} octahedra seems to explain the restricted development of the heteropolyanion restrained in this direction.

Calculations were carried out on the HITAC 8800/ 8700 computer at the Computer Centre of the University of Tokyo.

References

Baker, L. C. W., Baker, V. S., Eriks, K., Pope, M. T., Shibata, M., Rollins, O. W., Fang, J. H. \& Koh, L. L. (1966). J. Am. Chem. Soc. 88, 2329-2331.

Fournier, M. \& Massart, R. (1974). C.R. Acad. Sci. Sér. C, 279, 875-877.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Leyrie, M., Fournier, M. \& Massart, R. (1971). C.R. Acad. Sci. Sér. C, 273, 1569-1572.
Malik, S. A. \& Weakley, T. J. R. (1968). J. Chem. Soc. A, pp. 2647-2650.
Tourné, C. M. \& Tourné, G. F. (1969). Bull. Soc. Chim. Fr. pp. 1124-1136.
Tourné, C. M., Tourné, G. F., Malik, S. A. \& Weakley, J. R. (1970). J. Inorg. Nucl. Chem. 32, 3875-3890.

Weakley, T. J. R., Evans, H. T. Jr, Showell, J. S., Tourné, G. F. \& Tourné, C. M. (1973). J. Chem. Soc. Chem. Commun. pp. 139-140.
Weakley, T. J. R. \& Malik, S. A. (1967). J. Inorg. Nucl. Chem. 29, 2935-2944.
Zonneville, F. (1976). Dissertation, Univ. des Sciences et Techniques du Languedoc.

[^0]: * Present address: Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan.

[^1]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36057 (28 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

